
2MUCHCOFFEE’S ANGULAR MANIFESTO

Welcome to 2muchcoffee’s professionals family - open
source contributors with a distinct development concept,

personal approach, and precisely measured results.
Enjoy your coffee while we’re building your app!

https://2muchcoffee.com/

CONTENTS

1. Fundamental Architectural points 3

5

8

9

10

11

2. Basic Angular-scope points

3. Main RxJS points

4. Code quality points

5. Open source NGX-restangular

6. Contacts

We are honored to present an Angular Manifesto based on Angular’s
team recommendations, commonly used best practices, and expanded
with our personal long-term experience and technical expertize.Enjoy

your coffee while we’re building your app!

https://2muchcoffee.com/

FUNDAMENTAL
ARCHITECTURAL POINTS

1. Use the Angular CLI for initializing, developing, building, scaffolding
and maintaining Angular applications;

2. File structure - use commonly used practices declared by an
Angular’s team and follow the LIFT principle;

3 Use the Core, Shared and Feature modules for better code
management and architecture:

Should include only singletons: Services, Models, Interceptors,
Resolvers, application-wide components that are being used only
once in the AppComponent template;

Prevent re-import of the Core module.

Should contain commonly used/re-used throughout the app
Components, Directives, Pipes;

Should contain third-party libraries modules that are used at
least in 50% of modules across the app;

Should not contain third-party libraries modules that are
heavyweight unless it’s used in most of the modules throughout
the app;

In case the main eager-loaded module, e.g. “HomeModule”
doesn’t need most of the Shared module imports, then you
should import to it only specific modules/components etc.

 3.1. The Core module:

3.2. The Shared module:

3

https://2muchcoffee.com/

FUNDAMENTAL ARCHITECTURAL POINTS

4. Implement the lazy-load workflow where it’s possible.

5. Services, Components, and functions inside them should be
readable, not bulky and primary follow the single-responsibility
principle. Consider:

6. Extract templates and styles into a separate file.

7. Use libraries that are written specifically for Angular, otherwise
create Angular wrappers for them.

Limiting files to 400 lines of code;

Limiting functions to no more than 75 lines.

4

https://2muchcoffee.com/

BASIC ANGULAR-SCOPE POINTS

1. A Component should conform to the following structure:

2. Appropriate naming:

static properties;

@Input properties;

properties(public first, then private);

accessors(public first, then private);

constructor method implementation;

lifecycle hook methods implementations;

methods(public first, then private).

The file names and the element selectors of Components should
be written in a dashed-case(kebab-case);

Always give the filename the conventional suffix (such
as .component.ts, .directive.ts, .module.ts, .pipe.ts, .service.ts
or .spec.ts) for a file of that type;

Suffix a Module/Component/Directive/Service class name with
Module/Component/Directive/Service relatively, e.g.
UsersComponent, DataService;

Use consistent names for all Services and Pipes named after their
feature;

5

https://2muchcoffee.com/

BASIC ANGULAR-SCOPE POINTS

Use the lower camel case for naming variables, including “const”,
and methods;

Use the lower camel case and a custom prefix for naming the
selectors of Directives;

Use the upper camel case for naming the Classes and Interfaces;

Consider using a class instead of an Interface, otherwise, consider
naming an interface without an I prefix;

Avoid prefixing private properties and methods with an
underscore;

In case an Accessor or a variable contains a stream, then its name
should include the “$” sign in the end;

In case a variable contains a boolean value - the name of such a
variable should start from the “is” preposition, e.g. “isAdmin”;

Don’t prefix the output properties with, e.g. the suffix “on”;

The properties and functions names should be explicit and
directly conform to its functionality;

6

https://2muchcoffee.com/

BASIC ANGULAR-SCOPE POINTS

3. Keep the presentation logic in the Component class, and not in the
Template.

4. Limit logic in a Component to only that required for the View -
delegate complex Component’s logic to a Service.

5. Use Services for any server data processing, e.g. API requests,
Actions dispatching etc.

6. The direct references to global objects, e.g. window, document are
not allowed for permanent usages. To reference the window object
you have to create a specific service that can be injected throughout
the app. For example, in case you need to use the Document object,
Angular provides it in the form of constant from @angular/common;

7. Preferably use pure pipes with only pure functions. In case you need
to call a function in a template - make it memoized through a pipe.

7

https://2muchcoffee.com/

MAIN RXJS POINTS

1. Use async pipe preferably.

2. Never subscribe in another subscribe - use appropriate RxJS
operators instead, i.e the “switchMap” operator.

3. Don’t subscribe in methods - use for subscriptions Angular lifecycle
hooks that are called only once after calling the constructor.

4. Avoid subscriptions in a Service if it’s not a singleton.

5. Always unsubscribe from a stream in the ngOnDestroy lifecycle
hook in case it’s not possible to use the async pipe.

6. Preferably don’t combinate Promises or the RxJS operator
“toPromise” with Observables.

7. Never use the setTimeout - use appropriate RxJS operators.

8. Don’t use RxJS timeline operators if you just need to run through
the ngZone.

9. Use RxJS Subjects for temporary data saving and handling events;

8

https://2muchcoffee.com/

CODE QUALITY POINTS

1. tslint.json - create/use a distinct, unified and consistent coding,
naming, and whitespace conventions.

2. Use Typescript typing power - provide type definitions for all
declarations across the app.

3. Consider using the “ordered-imports” tslint rule - files imports:

4. Use the @Input and @Output() class decorators instead of the
inputs and outputs properties of the @Directive and @Component
metadata. Consider placing decorators on the same line as the
property it decorates.

5. Use the @HostListener and @HostBinding instead of the host
property.

6. Use current and supported libraries only.

Angular imports;

Third party libraries imports;

Parent level application imports;

Current level application imports;

Children level application imports.

3.1. Should be alphabetized;

3.2. Should be structured according to a commonly used style
guide, described in TSLint rules as a “groups” option:

3.3. Each type of imports should be separated with an empty line.

9

https://2muchcoffee.com/

OPEN SOURCE NGX-
RESTANGULAR

FEATURES

Ngx-restangular is an Angular 2+ service that simplifies common
GET, POST, DELETE, and PUT requests with a minimum of a client
code. Ngx-restangular is responsible for communication between

1. Self-linking elements support;

2. Supports both - Promises and Observables;

3. Send a request from/within an object - don’t create a new object for
each request;

4. Supports nested RESTful resources;

5. Use meaningful names instead of URLs;

6. Provides an ability to create your own HTTP methods;

7. Send requests easily using different settings;

10

GITHUB

API and complex frontend web apps.

https://github.com/2muchcoffeecom/ngx-restangular/
https://2muchcoffee.com/

YOU’RE WELCOME TO
CONTACT OUR CEO

2MUCHCOFFEE

sales@2muchcoffee.com

2muchcoffee.com

11

DMITRIY MELNICHENKO

dmytro@2muchcoffee.com

2muchcoffee.com

https://www.linkedin.com/in/dmitriymelnichenko/
https://twitter.com/tairezzzz
https://www.facebook.com/tairezzzz
https://www.linkedin.com/company/2muchcoffee/
https://twitter.com/2muchcoffeecom
https://www.facebook.com/2muchcoffeecom/
https://github.com/2muchcoffeecom
https://medium.com/@2muchcoffee
https://2muchcoffee.com/
https://2muchcoffee.com/

